

**Tomorrow: Modelling approaches for metamaterials** 

# Towards optical left-handed metamaterials



M. Kafesaki, R. Penciu, Th. Koschny, P. Tassin,



E. N. Economou and C. M. Soukoulis



Foundation for Research & Technology, Hellas (FORTH) & Univ. of Crete, Greece Ames Lab & Iowa State University (ISU), USA

### Left-handed metamaterials?



### Novel phenomena in left-handed materials (LHMs)



Veselago (1968), Pendry (2000)

## **Application areas of left-handed materials**

### New solutions and possibilities in

### •Imaging/microscopy

- •Lithography
- •Data storage



### Exploiting the subwavelength resolution capabilities of LHMs

### The "trapped rainbow"



•Communications and information processing (subwavelength guides, optimized/miniaturized antennas & filters, improved transmission lines ...)

### Negative $\mu$ and n towards visible

#### Fore review, see:

Soukoulis et. al., Science 315 (2007)
Shalaev, Nat. Mat. (2007)
Soukoulis & Wegener, Nat. Phot. (2011)

–100 nm 1,000 -Leading efforts by Magnetic resonance frequency (THz) •Karlsruhe F1μm XVIII xiv xv •Purdue 100 •Stuttgart -10 μm •Berkeley 10 Wavelength • . . . . -100 μm ∆ ∨ F1mm 0.1--1 cm 0.01-Hard to н –10 cm achieve optical 2001 2002 2003 2004 2005 2006 2001 2008 2009 2010 2011 negative **µ** 

Figure from Soukoulis & Wegener, Nature Photonics 5 (2011)

### Negative $\mu$ and n towards visible



### **Multilayer metamaterials**



### Towards 3D-isotropic negative $\mu$ and n

#### Multilayer SRR (stereometamaterials)







Figure from Soukoulis & Wegener, Nature Photonics 5 (2011)

#### **3D-SRR (membraneprojected lithography)**



#### Chiral metamaterial (DLW+electroplating)



Karlsruhe



#### Ameslab

### **Optical metamaterials: Problems/challenges**

### **High losses**

### Limited fabrication

capabilities

- **Current procedures:**
- •difficult/time-consuming
- •expensive
- unable to produce
  - complicated patterns
  - large samples
  - 3D isotropic designs

# **Optical metamaterials: Facing the challenges**





# Limited fabrication capabilities

- **Current procedures:**
- •difficult/time-consuming
- •expensive
- •unable to produce
  - complicated patterns
  - large samples
  - 3D isotropic designs

- Analysis & design optimization
  "Good" constituent media (material optimization)
- •Gain media?
- •Alternative approaches (anisotropic media, chiral media, EIT)
  - Advancement of fabrication procedures
  - New fabrication methods (direct laser writing, nanoimprint lithography)
  - New designs/approaches, adapted to fabrication capabilities

# **Optical metamaterials: Facing the challenges**





# Limited fabrication capabilities

- **Current procedures:**
- •difficult/time-consuming
- •expensive
- •unable to produce
  - complicated patterns
  - large samples
  - 3D isotropic designs

- Analysis & design optimization
  "Good" constituent media (material optimization)
- •Gain media?
- •Alternative approaches (anisotropic media, chiral media, EIT)
  - Advancement of fabrication procedures
  - New fabrication methods (direct laser writing, nanoimprint lithography)
  - New designs/approaches, adapted to fabrication capabilities

### Outline

- Analysis of wave propagation in optical left-handed metamaterials (OLHMs)
- Optimization (design & material) of OLHMs as to achieve high operation frequency and broadbandwidth
- Loss-examination & optimization of OLHMs as to achieve low-losses
- Alternatives of metal for OLHMs?

#### **Relevant publications**

- R. S. Penciu, M. Kafesaki, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Magnetic response of nanoscale left-handed metamaterials, Phys. Rev. B 81 (2010)
- Ph. Tassin, Th. Koschny M. Kafesaki and C. M. Soukoulis, *Graphene superconductors and metams: What makes a good conductor for metamaterials*, Nature Photonics 6, 259 (2012)

### Outline

- Analysis of wave propagation in optical left-handed metamaterials (OLHMs)
- Optimization (design & material) of OLHMs as to achieve high operation frequency and broadbandwidth
- Loss-examination & optimization of OLHMs as to achieve low-losses
- Alternatives of metal for OLHMs?

#### **Relevant publications**

- R. S. Penciu, M. Kafesaki, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Magnetic response of nanoscale left-handed metamaterials, Phys. Rev. B 81 (2010)
- Ph. Tassin, Th. Koschny M. Kafesaki and C. M. Soukoulis, *Graphene superconductors and metams: What makes a good conductor for metamaterials*, Nature Photonics 6, 259 (2012)

### **Designs discussed here**



**Seek for optimization rules** 

High frequency Broad-band Low-loss

### **Slab-pair : Effective RLC circuit**







 $\phi_{ext} = \mu_0 H_0 A e^{-i\omega t}$ 

Kirchoff's equation



Magnetization,  $M=m/V_{uc}=\mu_0(\mu-1)H$ 

### **Slab-pair magnetic response (RLC circuit description)**



 $\omega_m$  $\omega$ 

 $F \sim$  volume fraction of the resonator within unit cell (determines the resonance strength)

 $R_{tot} = R + K$ 

for all-type losses)

#### Tassin *et al.*, Nature Photon. **6**, 259 (2012)

### Magnetic resonance frequency vs length scale

### Al metal, Glass substrate



**Saturation** of magnetic resonance frequency in small length scales (*a*<500 nm)

### Magnetic permeability by scaling down the structures



### Spectral width of negative µ regime



### Slab-pair magnetic response (RLC circuit description)



#### Tassin *et al.*, Nature Photon. **6**, 259 (2012)

### **Slab-pair total** <u>resistance</u>



For free electrons (Drude metals)  $\omega_p$  = metal plasma frequency  $\gamma_m$  = metal collision frequency

**Material dependent + Geometry dependent** 

$$Re(R) = R_{ohm}$$
$$Im(R) = -\omega L_e$$

$$R = \rho \frac{l}{S} = \frac{\gamma_m}{\varepsilon_0 \omega_p^2} \frac{l}{S} - i\omega \frac{1}{\varepsilon_0 \omega_p^2} \frac{l}{S} = R_{ohm} - i\omega L_e$$



Inductive term (electrons kinetic inductance) due to electrons inertia ("Difficulty" to accelerate finite mass particles with such high rates) Solymar, Economou, Shevts, Tretyakov, ...

### High frequency magnetic permeability



$$\mu(\omega) = 1 - \frac{F'\omega^2}{\omega^2 - \omega_m^2 + i\omega\gamma'}$$

### **Kinetic inductance factor**





*F*: filling ratio

$$\xi = \frac{L_e}{L}$$





For uniform scaling:  

$$L_e \sim \frac{1}{a}$$
 $\operatorname{Re}(R) \sim \frac{1}{a}$ 

Pronounced role in small scales *a: lattice constant* 

### **Explaining the observed response**



# For high frequency magnetic metamaterials





## **Optimizing slab-pair-based systems**





<u>Thick</u> & wide slabs
"Thick" separation layer
<u>"Metal" of high ω<sub>p</sub></u>

### What about losses?

### Outline

- Analysis of wave propagation in optical left-handed metamaterials (OLHMs)
- Optimization (design & material) of OLHMs as to achieve high operation frequency and broadbandwidth
- Loss-examination & optimization of OLHMs as to achieve low-losses
- Alternatives of metal for OLHMs?

#### **Relevant publications**

- R. S. Penciu, M. Kafesaki, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Magnetic response of nanoscale left-handed metamaterials, Phys. Rev. B 81 (2010)
- Ph. Tassin, Th. Koschny M. Kafesaki and C. M. Soukoulis, *Graphene superconductors and metams: What makes a good conductor for metamaterials*, Nature Photonics 6, 259 (2012)

# **Dissipative loss**

$$\Pi = \frac{\text{Dissipative loss } (=\text{Re}(R) |I|^2)}{\text{Incident power}} \qquad \tilde{\omega} = \omega / \omega_0$$
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
$$\tilde{\omega}^2 (1 + \xi) - 1]^2 + \tilde{\omega}^2 \zeta^2$$
$$F: \text{ filling}$$

### **Kinetic inductance factor (dimensionless)**

*F*: filling ratio

$$\xi = \frac{L_e}{L} = -\operatorname{Im}(R) \frac{1}{\tilde{\omega}} \sqrt{\frac{C}{L}} == G(\text{geometry}) \frac{1}{\omega} \times \operatorname{Im}(\rho)$$

**Dissipation factor (dimensionless)** 

$$\zeta = \operatorname{Re}(R) \sqrt{\frac{C}{L}} = \frac{1}{Q} = G(\operatorname{geometry}) \times \operatorname{Re}(\rho)$$

 $\operatorname{Re}(\rho) = \frac{\gamma_m}{\varepsilon_0 \omega_p^2}$ 

Loss depends only on  $\xi$ ,  $\zeta$ , F

Tassin

### Magnetic permeability in dimensionless quantities

 $\zeta \sim \operatorname{Re}(R) \sim G(\operatorname{geometry}) \times \operatorname{Re}(\rho)$  Dissipation factor

Permeability also depends only on  $\xi$ ,  $\zeta$ , F

Tassin *et al.*, Nature Photon. **6**, 259 (2012)



Dissipation depends "only" on  $\zeta \rightarrow \zeta$ : good quantity to quantify losses (loss figure-of-merit) and compare conductors

For low-loss metamaterials small dissipation factor is required  $\rightarrow$  Small Re(*R*)  $\rightarrow$  Small Re( $\rho$ )

### FOMs for high-quality magnetic metamaterials?

Loss figure-of-merit: Dissipation factor  $\zeta$ For low-loss metamaterials small dissipation factor  $\zeta$  (~small Re(*R*)) is required

$$\zeta \sim \operatorname{Re}(R) \sim \frac{1}{t_m} \times \operatorname{Re}(\rho)$$
  $t_m: \text{ metal thickness}$ 

Freq. saturation figure-of-merit: Kinetic inductance factor  $\xi$ 

For high-freq. metamaterials small  $\xi$  (~small Im(R)) is required

$$\xi \sim \operatorname{Im}(R) \sim \frac{1}{t_m} \times \frac{\operatorname{Im}(\rho)}{\omega}$$

$$\mathbf{Re}(\rho) = \frac{\gamma_m}{\varepsilon_0 \omega_p^2}$$

 $\operatorname{Im}(\rho) = -\frac{\omega}{\varepsilon_0 \omega_p^2}$ 

$$\tilde{\omega}_m = \omega_m / \omega_0 = 1 / \sqrt{(1 + \xi)}$$

Material-dependent part: Re(ρ), Im(ρ)

Good quantities to compare conducting materials

### Outline

- Analysis of wave propagation in optical left-handed metamaterials (OLHMs)
- Optimization (design & material) of OLHMs as to achieve high operation frequency and broadbandwidth
- Loss-examination & optimization of OLHMs as to achieve low-losses
- Alternatives of metal for OLHMs?

#### **Relevant publications**

- R. S. Penciu, M. Kafesaki, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Magnetic response of nanoscale left-handed metamaterials, Phys. Rev. B 81 (2010)
- Ph. Tassin, Th. Koschny M. Kafesaki and C. M. Soukoulis, *Graphene superconductors and metams: What makes a good conductor for metamaterials*, Nature Photonics 6, 259 (2012)

# **Comparing gold with graphene**

### At IR

Graphene conductivity from Li et al, Nature Phys. 4, 532 (2008)



Graphene performs worse than gold

*Reason*?: Small thickness  $\rightarrow$  large  $R \rightarrow$  weak total current

Tassin *et al.*, Nature Photon. **6**, 259 (2012)

# **Comparing silver with YBCO**

#### **Resistivity from experimental data**



# High-Tc superconductors perform worse than silver

# *Reason*?: No complete screening of free electrons by Cooper pairs in high frequencies

Tassin *et al.*, Nature Photon. **6**, 259 (2012)

## **Comparing losses in different conductors**



Tassin *et al.*, Nature Photon. **6**, 259 (2012)

### Still silver is best at IR and visible!

### **Slab-pair electric resonance**

### Apart of anti-symmetric current mode (magnetic dipole response)



### **Electric dipole resonance in small length scales?**



# For high-frequency, low-loss quasistatic plasmon resonance

### For high-frequency: small kinetic inductance factor $\xi$ (~small Im( $\rho$ )) is required

# For low-loss: small dissipation factor $\zeta$ (~small Re( $\rho$ )) is required



## **Summary/Conclusions**

- Magnetic metamaterial behaviour towards optical regime (nm scale):
  - magnetic resonance frequency saturates
  - permeability resonance becomes weaker
  - negative permeability regime vanishes
- RLC circuit description and metal dispersive responses of a count for all the above effects and can lead to figures of merit and design rules for high frequency magnetic metamaterials
- Optimized high-frequency response requires metals small Re and Im part of <u>resistivity</u>

r than graphene and Thank you
ng material for visibl









